Critical properties of the three-dimensional self-avoiding walk

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 205029
(http://iopscience.iop.org/0305-4470/20/14/040)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 20:51

Please note that terms and conditions apply.

COMMENT

Critical properties of the three-dimensional self-avoiding walk

Karen Kelly, D L Hunter and Naeem Jan
Physics Department, St Francis Xavier University, Antigonish, Nova Scotia, B2G 1C0, Canada

Received 25 March 1987

Abstract

Accurate Monte Carlo data are used to determine the critical exponent $\nu(=0.590 \pm$ 0.001) or inverse fractal dimension of the three-dimensional self-avoiding walk. The leading correction to scaling term is non-analytic and is near 0.5 .

Recent Monte Carlo work (Rapaport 1985a, b, Hunter et al 1986) on the twodimensional self-avoiding walk (SAw) concluded that the leading correction-to-scaling term Δ_{1} is analytic, i.e.

$$
\begin{equation*}
R_{N}^{2} \sim A N^{2 \nu}\left(1+B N^{-\Delta_{1}}+C N^{-\Delta_{2}}+\ldots\right) \tag{1}
\end{equation*}
$$

where R_{N} is the root-mean-square end-to-end distance of a saw of N steps, ν is the leading exponent and Δ_{1} the leading correction term. This result was at variance with some analyses of the series data and other Monte Carlo work (see e.g. Hunter et al (1986) for a discussion and the relevant references). MacDonald et al (1987) extended the exact enumeration data for the square lattice (28 terms) and the honeycomb lattice (42 terms) and the additional terms confirmed the Monte Carlo conclusion mentioned above, i.e. $\Delta_{1}=1$!

Rapaport (1985b) extended the series and analysed the data for the threedimensional SAw and from the extended series together with Monte Carlo results concluded that the leading correction to scaling term Δ_{1} is analytic, i.e. $\Delta_{1}=1$ while $\nu=0.592 \pm 0.002$. This value is in conflict with previous series analysis (Majid et al 1983) and the generally accepted highly accurate ε-expansion of the $n \rightarrow 0$ limit of the n-vector model (Le Guillou and Zinn-Justin 1985) where the primary conclusions are $\Delta_{1} \simeq 0.5$, i.e. the leading correction term is non-analytic and $\nu=0.589$. Guttmann (1986a, b) recently extended the series for the three-dimensional cubic lattice (20 terms) and reported a value of ν of 0.592 in agreement with Rapaport and slightly higher than the ε-expansion results. This value is closer to Flory's prediction of 0.6 and thus Guttmann's result suggests the possibility that additional terms may push the series results towards 0.6 . The second factor to be resolved is whether the correction term is analytic or not. Our comment aims to clarify these two points on the simple cubic lattice.

The 'wiggle' method (MacDonald et al 1985) is used to simulate conformations of the saw from length $N=10$ to 800 . The average rms end-to-end distance agrees remarkably well (to better than 0.15%) with the exact values and to within 1% for the longer chains reported by Rapaport. At least 200000 independent conformations were generated for the shorter chains (i.e. $N \leqslant 120$) and from 150000 conformations for $N=150$ to 30000 conformations for $N=800$. The 30000 conformations for $N=800$ took approximately 450 h on a Sun $3 / 50$ work station.

A simple analysis of the data for long chains ($N \geqslant 150$), i.e. a $\ln -\ln$ plot of R_{N}^{2} against N, leads to $2 \nu=1.183$ and $A \sim 1.45$ in excellent agreement with Rapaport (1985b) and Guttmann (1986a, b). These values were then used in the analysis of the shorter chains through

$$
\left(R_{N}^{2}-A N^{2 v}\right) \text { against } A B N^{2 v-\Delta_{i}} .
$$

We were unable to distinguish between $\Delta_{1}=0.5$ and 1 from our data although the correlations were slightly better for $\Delta_{1}=0.5$. A more compelling analysis is made by plotting $2 \nu(N-m, N+m)$ against $1 / \sqrt{ } N$ and $2 \nu(N-m, N+m)$ against $1 / N$ for segments of length m in N. For the series data $m=1(N \leqslant 20)$; m varied for the Monte Carlo data from $m=4$ for $N>20$ to $m=200$ for $N=600$. The results are shown in figure $1(a)$ and (b). The primary conclusion is that a better fit to a straight line is obtained from $1 / \sqrt{ } N(N>16)$ than for $1 / N(N>33)$.

Our main results are (i) we can exclude Flory's value of 0.6 from the investigation of longer chains; (ii) the value of 2ν is 1.180 ± 0.002 and (iii) the correction-to-scaling exponent Δ_{1} is ~ 0.5.

Figure 1. (a) Plot of $2 \nu(N-m, N+m)$ against $1 / N^{1 / 2}$ for N varying from 600 to 5 . The data are well represented by a straight line for $N>16$. Results of Guttmann (1986a, b) (G) and Le Guillou and Zinn-Justin (1985) (LG-ZJ) are shown with the corresponding error bars. The series results for ν are indicated by and the Monte Carlo results by \square. (b) As for (a) except 2ν is plotted against $1 / N$. Straight line behaviour is only observed for $N>33$.

We thank A Guttmann, F Leyvraz and D Stauffer for useful conversations. DLH and NJ are supported by NSERC grants.

References

Guttmann A J 1986a Stat. Phys. 16, Boston University Poster

- 1986b Preprint University of Melbourne

Hunter D L, Jan N and MacDonald B 1986 J. Phys. A: Math. Gen. 19 L593
Le Guillou J C and Zinn-Justin J 1985 J. Physique Lett. 46137
MacDonald B, Jan N, Hunter D L and Steinitz M O 1985 J. Phys. A: Math. Gen. 182627
MacDonald D, Hunter D L and Jan N 1987 Preprint St Francis Xavier University
Majid I, Djordjevic Z and Stanley H E 1983 Phys. Rev. Lett. 511282
Rapaport D C 1985a J. Phys. A: Math. Gen. 18 L39
-1985b J. Phys. A: Math. Gen. 18113

